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A note on isolated convection in a rotating
two-layer fluid

By D A V I D C. C H A P M A N
Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA

(Received 11 February 1997 and in revised form 10 June 1997)

The approach of Visbeck, Marshall & Jones (1996) is used to explain the primary
results of a recent laboratory study of isolated convection in a two-layer fluid reported
by Narimousa (1996).

1. Introduction
Recently, Narimousa (1996) has presented the results of some interesting laboratory

experiments on isolated convection in a rotating two-layer fluid, as depicted in figure
1. The two-layer fluid was brought to solid-body rotation in a cylindrical tank.
Salt water was added at the surface of the upper layer to approximate a constant,
uniform, negative buoyancy flux B0 within a circular region with radius r0. The water
beneath the imposed buoyancy flux became denser and sank to the interface, where
it accumulated and produced one of three responses. Sometimes the water became
dense enough to penetrate the interface and sink rapidly to the bottom. In other
cases, the water remained in the upper layer, forming a density front around the edge
of the buoyancy forcing region which slumped radially outward along the interface.
The front eventually broke up into mesoscale vortices, but the denser upper-layer
water never penetrated the interface. Finally, there were intermediate cases in which
the water accumulated at the interface and slowly leaked into the lower layer through
‘holes’ created in the interface.

Narimousa found that the three regimes could be distinguished by the Richardson
number, defined as

Ri = g
δρ

ρ0

h0(B0r0)
−2/3, (1)

where δρ is the density difference across the interface, h0 is the upper-layer thickness,
g is gravitational acceleration and ρ0 is the upper-layer density (see figure 1). If
Ri < 5, then the convecting dense water penetrated rapidly into the lower layer. If
Ri > 11, the convecting dense water remained within the upper layer. Intermediate
cases occurred for 5 < Ri < 11. These results were found to be independent of the
natural Rossby number, defined by

Ro∗ = (B0/f
3h2

0)
1/2, (2)

where f is the Coriolis parameter.
Two further interesting findings were reported for the cases which did not penetrate

the interface (Ri > 11). The resulting vortices had diameters given by

Ds ≈ 8(B0r0)
1/3/f (3)
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Figure 1. Schematic side view of the problem geometry. A negative buoyancy flux B0 is applied at
the surface in a circular region of radius r0 over a rotating two-layer fluid.

with maximum swirl velocities given by

vs ≈ (B0r0)
1/3. (4)

I offer here an interpretation of Narimousa’s results based on the recent ‘parcel
theory’ approach to isolated convection developed by Visbeck, Marshall & Jones
(1996; hereinafter referred to as VMJ). The intent is both to provide an explanation
for the two-layer laboratory results and to demonstrate the usefulness of the theoretical
framework developed by VMJ. I review the VMJ approach in § 2 and apply it to the
two-layer fluid in § 3.

2. Theoretical ideas
In virtually all examples of isolated convection, whether numerical calculations or

laboratory experiments, the scenario is qualitatively as follows. The water beneath
the surface buoyancy flux (r < r0) becomes denser and sinks into the ambient fluid,
forming a chimney. The resulting horizontal density gradients established between
the chimney water and the ambient water adjust toward geostrophy, generating a
rim current flowing around the edge of the chimney. The rim current is baroclinically
unstable, so waves grow into eddies which eventually break away from the rim current
and exchange chimney water with ambient water.

VMJ assumed that an equilibrium would eventually be reached in which the loss
of buoyancy at the surface is balanced by the gain of buoyancy within the chimney
produced by eddy exchange with the ambient fluid. By equating these fluxes and
choosing appropriate scales for the eddy velocity and density fluctuations, VMJ
estimated the equilibrium chimney density anomaly and the time to reach equilibrium
in terms of known parameters.

VMJ showed that their estimates are consistent with a wide variety of numerical
and laboratory studies of deep convection, in which the ambient stratification is
strong enough that the chimney never penetrates to the bottom. They also used their
approach to derive scales for shallow convection, in which the ambient stratification
is weak and the chimney reaches the bottom rapidly, but they did not report any tests
of the shallow convection results.

I have recently tested the approach of VMJ for the case of shallow convection and
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found it to be successful in estimating the equilibrium scales (Chapman 1997). It is
these results that I apply to the case of isolated convection in a rotating two-layer
fluid, as reported by Narimousa (1996). To do so, I consider the inviscid response to a
buoyancy flux B0 applied in a circular region (r < r0) at the surface of a homogeneous
fluid with density ρ0 and constant depth h0 (i.e. a rigid bottom at depth h0). The
density beneath the buoyancy flux initially increases by an amount

∆ρ =
ρ0B0

gh0

t, (5)

where t is time after the buoyancy flux is applied. The rim current produced by this
density difference is nearly in thermal wind balance, given by

∂v

∂z
= − g

ρ0f

∂ρ

∂r
≈ g

ρ0f

∆ρ

Rd
, (6)

where v is the velocity along the front, z is the vertical coordinate pointing upwards,
r is the radial coordinate directed outward from the centre of the buoyancy forcing,
and Rd is the baroclinic Rossby radius, defined by

Rd =

(
gh0

f2

∆ρ

ρ0

)1/2

. (7)

The rim current is vertically antisymmetric, so the vertical shear is well approximated
by ∂v/∂z ≈ 2vm/h0 where vm is the maximum velocity at the surface. Substituting (5),
(7) and the approximate vertical shear into (6) produces

vm ≈ 1
2
(B0t)

1/2. (8)

My numerical calculations show that this estimate for the maximum velocity within
the rim current is quite good (Chapman 1997).

Using (5) and (8) to provide scales in the equilibrium balance assumed by VMJ, the
density anomaly at equilibrium and the time to reach equilibrium are estimated as

∆ρe = α−2/3 ρ0

gh0

(B0r0)
2/3, te = α−2/3

(
r2

0

B0

)1/3

, (9)

where α represents the efficiency of eddy exchange and is determined from my
numerical calculations of shallow convection to be about 0.044 (Chapman 1997).
These estimates (9) were first derived by VMJ with the slight difference that they used
the total velocity difference (2vm) to define the vertical shear, so their α′ is equal to my
α/2. In summary, ∆ρe is the maximum density increase that the layer of thickness h0

can experience for the specified buoyancy flux B0 and radius of forcing r0. The time
to reach this density anomaly is te.

A typical example of a numerical calculation of shallow convection is shown in
figure 2. A surface buoyancy flux of B0 = 16.9×10−7 m2 s−3 was applied at time t = 0
in a circle of radius r0 = 20 km, centred at x = y = 0. The water density was initially
uniform. The depth h0 = 50 m and Coriolis parameter f = 1.3×10−4 s−1. Other details
of the primitive-equation model and calculations are presented by Chapman (1997).
Horizontal velocity vectors and one density contour (which represents the outermost
edge of the denser water) are shown at the surface and bottom, after 5 and 8 days.
By day 5, eddies have grown along the rim current and are moving radially outward.
By day 8, several eddies have almost separated from the rim current. According to
(9), buoyancy equilibration occurs at te = 5.7 days.
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Figure 2. Results from a numerical calculation of shallow convection in which a constant surface
buoyancy flux of B0 = 16.9× 10−7 m2 s−3 is applied over a circular region with radius r0 = 20 km,
centred at x = y = 0. The depth is h0 = 50 m, and f = 1.3 × 10−4 s−1. Shown are plan views
of horizontal velocity vectors (plotted every third grid point) and a density anomaly contour
(∆ρ = 0.05 kg m−3), indicating the outermost edge of the convecting fluid, after (a, b) t = 5 days,
(c, d) t = 8 days of forcing. Left (right) panels are surface (bottom) values. A reference vector of
1 m s−1 is plotted in the lower right corner.

3. Application to a two-layer fluid
If the homogeneous fluid of constant depth h0 in § 2 is imagined to represent the

upper layer of the two-layer fluid (figure 1), then ∆ρe represents the density increase
possible in the upper layer. If ∆ρe < δρ then the upper-layer density will never
become greater than the lower-layer density, despite continued buoyancy forcing, so
convection cannot penetrate to the lower layer. If ∆ρe > δρ, then the density beneath
the buoyancy forcing becomes greater than the lower-layer density before equilibrium
is reached, so the convecting fluid penetrates through the interface and to the bottom.
The transition between the two situations occurs when ∆ρe ≈ δρ, which can be
written in terms of a transition Richardson number, using (1) and (9), as

RiT = g
δρ

ρ0

h0(B0r0)
−2/3 = α−2/3 = 8. (10)
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If Ri < RiT , then ∆ρe > δρ and convection should penetrate into the lower layer. If
Ri > RiT , then ∆ρe < δρ and convection should not penetrate into the lower layer.
This transition (RiT = 8) is precisely in the middle of the intermediate regime found
by Narimousa (1996), suggesting that the transition in the laboratory experiments
may be understood in terms of the simple ideas presented in § 2. The intermediate
regime occurs for cases close to the transition (∆ρe ≈ δρ; Ri ≈ 8) which are
problematic for the theory because the density of the convecting fluid in the upper
layer becomes comparable to that in the lower layer, so the interface is presumably
displaced appreciably and the simple analysis based on a rigid bottom at depth h0 is
inappropriate. Nevertheless, the conceptual approach of VMJ appears to explain the
basic nature of the laboratory results. Furthermore, the transition (10) depends only
on Ri and not Ro∗, also in agreement with the laboratory results.

For cases in which convection does not penetrate through the interface (Ri > 8),
the maximum swirl velocity in the eddies should be approximately the surface velocity
of the rim current given by (8) because the eddies develop from the rim current. The
swirl velocity is presumably set while the unstable waves are growing, which must
occur before equilibrium, i.e. t < te, but the precise time is uncertain. An upper bound
on the swirl velocity can be estimated by evaluating the velocity at equilibrium, i.e.
(8) evaluated at te,

ve = 1
2
α−1/3(B0r0)

1/3. (11)

This has the same form as Narimousa’s result (4), but with a larger coefficient (1.4
for α = 0.044 compared to 1), as it should for an upper bound. If the velocity
scale is set at t ≈ te/2, then the coefficient in (11) is reduced to 1, in agreement with
Narimousa’s results. For the example shown in figure 2, (11) produces ve = 0.46 m s−1,
while Narimousa’s result (4) suggests vs = 0.32 m s−1. The actual maximum velocities
within the eddies in figure 2 range from about 0.3 to 0.4 m s−1, encompassing the
estimates reported by Narimousa.

An estimate of the diameter of the eddies does not follow directly from the approach
of VMJ. It is clear that the diameter must scale with the baroclinic Rossby radius, but
the proportionality factor is unknown. VMJ hypothesized that the diameter should
be twice the Rossby radius, in accord with baroclinic instability theory. However,
Spall (1995) showed that eddies generated by baroclinic instability at a narrow front
increase in size as they move away from the front, making D ≈ 2

√
2Rd. Such growth

can be seen in figure 2 as the eddies move away from the rim current. Another
estimate comes from Saunders’ (1973) laboratory result that the number of eddies
around the forcing region is given by m = 1.8r0/Rd. The m eddies must fit around the
circumference of the forcing region, so

D = 2πr0/m = 2πRd/1.8 = 3.5Rd. (12)

Using these estimates and the Rossby radius at equilibrium (i.e. Rd from (7) evaluated
using ∆ρe from (9)) with α = 0.044 produces

D ≈ (8− 9.9)(B0r0)
1/3/f. (13)

This has the same form as Narimousa’s result (3) and also encompasses his estimated
coefficient. Furthermore, the larger coefficient of 9.9 falls within the scatter of eddy
diameters in Narimousa’s figure 7, so the difference may not be meaningful. The
diameter predicted by (13) for the example shown in figure 2 is D = 20–25 km, which
is a good estimate for the larger eddies in the lower panels. Given the uncertainties
in defining both the maximum swirl velocity and the diameter of the eddies, it
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appears that the laboratory results are again quite consistent with the theoretical
ideas presented above.

4. Discussion
Taken together, the above results provide an explanation for the primary findings

of Narimousa (1996) in his study of isolated convection in a rotating two-layer fluid.
More importantly, they suggest that the parcel theory approach of VMJ represents
a powerful framework for understanding problems of this type. For example, the
simple scaling expressions might prove to be useful for parameterizing dense water
formation in large-scale numerical models, thereby reducing the need for numerous
expensive high-resolution calculations.

The results also have implications for the maintenance of the Arctic halocline
and the fate of dense water formed by atmospheric cooling and/or brine rejection
during ice formation. It is generally thought that the Arctic halocline is maintained
by lateral input of dense water from the Arctic shelves where ice production is highest
(e.g. Aagaard, Coachman & Carmack 1981). An estimate of the expected maximum
increase in density over the shelves can be made using (9). For a shallow coastal
polynya with h0 = 50 m and a horizontal scale of r0 = 20 km (e.g. Pease 1987), a
typical buoyancy flux of B0 = 3× 10−7 m2 s−3 yields ∆ρe = 0.54 kg m−3. This density
increase is certainly not enough to penetrate the halocline in the deep basins, where
the density increases fairly sharply by 3–4 kg m−3. Even a more extreme buoyancy flux
of B0 = 8× 10−7 m2 s−3 (e.g. Cavalieri & Martin 1994) only increases ∆ρe to 1.04 kg
m−3. If the formation region were shallower, say h0 = 25 m, then ∆ρe would double,
but this still only approaches the density change through the halocline. Thus, under
ordinary circumstances, dense water formed in coastal polynyas may help maintain
the halocline by providing cold high-salinity water, but it would not be expected to
contribute much to the deep water.

The small values of ∆ρe support the idea that the ambient density of shelf water
when freezing begins in coastal polynyas is a very important factor in determining
whether or not any dense water is formed on the shelves, as suggested by Melling
(1993). If autumn salinities near the coast are slightly lower than normal, then the
small increase in density produced in the polynyas may not be enough to cause the
surface waters to sink to the bottom. In this case, the formation of dense water would
be completely inhibited for that year.

Finally, the simple ideas presented here point out the need for a priori theoretical
estimates of both the eddy efficiency α and the time at which the velocity scale is
set. At present, these are determined empirically, which adds some uncertainty to the
general application of the results.
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